Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica.

نویسندگان

  • Colleen Knoth
  • Jon Ringler
  • Jeffery L Dangl
  • Thomas Eulgem
چکیده

AtWRKY70, encoding a WRKY transcription factor, is co-expressed with a set of Arabidopsis genes that share a pattern of RPP4- and RPP7-dependent late upregulation in response to Hyaloperonospora parasitica infection (LURP) genes. We show that AtWRKY70 is required for both full RPP4-mediated resistance and basal defense against H. parasitica. These two defense pathways are related to each other, because they require PAD4 and salicylic acid (SA). RPP7 function, which is independent from PAD4 and SA, is not affected by insertions in AtWRKY70. Although AtWRKY70 is required for RPP4-resistance, it appears not to contribute significantly to RPP4-triggered cell death. Furthermore, our data indicate that AtWRKY70 functions downstream of defense-associated reactive oxygen intermediates and SA. Constitutive and RPP4-induced transcript levels of two other LURP genes are reduced in AtWRKY70 T-DNA mutants, indicating a direct or indirect role for AtWRKY70 in their regulation. We propose that AtWRKY70 is a component of a basal defense mechanism that is boosted by engagement of either RPP4 or RPP7 and is required for RPP4-mediated resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of transcription of nucleotide-binding leucine-rich repeat-encoding genes SNC1 and RPP4 via H3K4 trimethylation.

Plant nucleotide-binding leucine-rich repeat (NB-LRR) proteins serve as intracellular sensors to detect pathogen effectors and trigger immune responses. Transcription of the NB-LRR-encoding Resistance (R) genes needs to be tightly controlled to avoid inappropriate defense activation. How the expression of the NB-LRR R genes is regulated is poorly understood. The Arabidopsis (Arabidopsis thalian...

متن کامل

Mutations in retrotransposon AtCOPIA4 compromises resistance to Hyaloperonospora parasitica in Arabidopsis thaliana

Retrotransposons (RTEs) are a principal component of most eukaryotic genomes, representing 50%-80% of some grass genomes. RTE sequences have been shown to be preferentially present in disease resistance gene clusters in plants. Arabidopsis thaliana has over 1,600 annotated RTE sequences and 56 of these appear to be expressed because of the exact expressed sequence tag (EST) matches and the pres...

متن کامل

Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components.

In Arabidopsis, RPP4 confers resistance to Peronospora parasitica (P.p.) races Emoy2 and Emwa1 (downy mildew). We identified RPP4 in Col-0 as a member of the clustered RPP5 multigene family encoding nucleotide-binding leucine-rich repeat proteins with Toll/interleukin-1 receptor domains. RPP4 is the orthologue of RPP5 which, in addition to recognizing P.p. race Noco2, also mediates resistance t...

متن کامل

A putative nucleoporin 96 Is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1-1,constitutive 1.

The Arabidopsis thaliana suppressor of npr1-1, constitutive 1 (snc1) mutant contains a gain-of-function mutation in a Toll Interleukin1 receptor-nucleotide binding-Leu-rich repeat-type resistance gene (R-gene), which leads to constitutive activation of disease resistance response against pathogens. In a screen for suppressors of snc1, a recessive mutation, designated mos3 (for modifier of snc1,...

متن کامل

Identification of arabidopsis loci required for susceptibility to the downy mildew pathogen Hyaloperonospora parasitica.

Plants are susceptible to a limited number of pathogens. Most infections fail due to active defense or absence of compatibility. Many components of the plant's surveillance system and defense arsenal have been identified in the last decades. However, knowledge is limited on compatibility; in particular, the role of plant factors in the infection process. To gain insight into these processes, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular plant-microbe interactions : MPMI

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2007